
ON CONFORMALLY-INVARIANT MOTIONS OF A 
MATERIAL POINT 

(0 KONFO~NO-~VAR~ANTNYKH DViZHENRAKH ~ATERl~‘NO~ 
TOCHKI) 

PcMM, Vol. 30, No. I, 1966, pp. 4-13 

L.M. MARKHASHOV 
(Moscow) 

(Received $uly IO, 1965] 

One of the invariance principles used in theoretical physics is applied to the mass- 
independent motions of a material point : A law of material-point motion is constructed 
which admits the broadest group of space-time transformations relative to which the 
Maxwell equations are invariant, as the maximum group. 

The kinematics of conformally-invariant motions of a material point ie described. In 
connection with one of the possible treatments of such motions, a comparison is made with 
the Galileo inertia law. 

1. irermulatioa of the mblettt. Let us consider Maxwell’s equations for a matter-free 

space 

r&H=+%, divE=O, rOtE=--tF, divH= 0 (1.1) 

where c ia a universal constant (the velocity of light). 

It is known that these equations are invariant relative to a conformal fifteen parameter 

group of epace-time trensformations. 

Henceforth, we shall name this group the group G,,. 

ft is necessary to construct a family of motions which is transformed into itself for all 
. 

transformatrons of the group G,, and jost this group, and also to indicate its possible in- 

terpretation. 

Invariunee principles. Geometric and dynamical invariance principles play a significant 

part fn modem theoretical physics. Following Wigner [l and 21, let us briefly elucidate that 

substance by the example of afmpler (and older) geometrical principles. 
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Let some law of natare connecting some physical quantities to the space coordinates 
and time be established. Evidently, if the form of this law were to be altered from point to 

point, say, no observer would be able to observe it. Therefore, the very existence of this 
law already contains the fact of its invariance relative to some coordinate and time trans- 

formations (relative to coordinate transformations in this case). For this reason, we may be 

justified in assuming that every other law is also invariant relative to the same coordinate 

transformations. The set of all such transformations forms a group. Therefore, all laws, or 
at least some sets of them should be associated with some general group of transformations. 
The crux of the invariance principles is indeed this constraint imposed on the laws: just 

as the laws of nature check the regularities of the events they describe, so do the invariance 

principles establish a check on the laws themselves. The connection between the laws of 

nature and the events on one hand, and between the invariance principles and the laws of 

nature on the other, also contains many other similarities. 

The great heuristic value of the invariance principles is brought to light by: firstly, 

the fact that the truth of each new law of nature is confirmed by its covariance relative to 

an already known group of transformations (the Lorentz group, say) ; and secondly, the 

fact that some properties of such laws of nature which have not been written down explicit- 

ly may be established by using invariance principles. The idea of the invariance of the 

laws of nature dates actually back to Galileo. Einstein however was first to grasp its 
fnll implications and to shed new light on Galileo’s relativity principle [3]. A description 
of gravitational interaction is given in the Einstein theory of gravitation (general theory 
of relativity [3]). Weyl attempted to reduce all kinds of interactions to gravitational and 
electromagnetic ones connecting the latter with the space metric (see [4], for example). In 
fact both theories are closely connected with the idea of dynamical invariance. At present 

such concepts are successfully applied to quantum-mechanical phenomena, in theories of 

elementary particle interactions (see [S], say), and they lead to very interesting and promis- 

ing physical consequences. Theoretical aspects of the problem are also developed. For 
example, it is indicated how, from a knowledge of the group, to construct some further 

relationships 161. 

A deeper and more thorough exposition of the above ideas may be found in the afore- 

mentioned work of E. Wigner [I and 21. A n extensive bibliography may also be found there. 

Maxwell equations and inu4tionca*. The system of Maxwell equations (0.1) is closed 

in the sense that it may not be supplemented essentially by any other relationship between 
the electric and magnetic field Intensities, not derived from these equations themselves. 
Furthermore, it seems evident that any attempt to clarify the ‘fine structure’ of these 
aqaations, to refine them, will inevitably lead to the introduction of new physical quantities 
in the equations, and perhaps, new universal constants as well. It hence follows that within 
the scope of the (t, z, E, H, c) concepts, and only within these concepts, the Maxwell 
equations are absolotely exact and remain so throughoat all time. Therefore, the Maxwll 

equations describe some closed nniverse in which only space-time and the electromagnetic 
field are defined. 

However, the most natural and profound description of the properties of this universe 
is given not by the Maxell equations themselves, but by the maximum Lie group of trans- 
formstions which conserves these equations. In fact, to characterize a physical quantity 

* In the author’s opinion the viewpoint developed here agrees with Klein’s Erlangen program. 
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means, apparently, to show how this quantity changes its state upon interaction with other 

physical quantities. The latter is achieved by comparing possible states between themselves. 

This identification process is realized mathematically by a group of transformations. In 
particular, a group of transformations of the space-time coordinates will define tbs space- 
time configuration, and will help to understand it. Formally, the space coordinates and 

time are completely equivalent to other physical quantities in the Maxwell equations. 
Actually, their chief advantage in their application is, that they form a basis for quantitative 
measurement. As V.A. Fock /7] fp. 207) remarks, even if the physical meaning of the quant- 
ities t and x were not known in advance, the equations in which they appear would provide 
an insight into their properties. If the Maxwell equations are valid, we therefore know, at 
least in principle, about the physical properties and interactions of the set of variables 

(4 =, E, I-f, c) - 

In this case, we must accept the fact that every other law expressing the relationship 
between elementa of the same set of quantities, or part of them, does not provide us with 
any new information about them. The group associated with this law, which uniquely char- 
acterizes its universe, may not be of greater or lesser order, than the group of Maxwell equa- 
tions. It may not be greater since thia would imply the presence of properties of the 
(r. t, E, 8, e) universe not described by the Maxwell equations. 

It may not also be of lesser order since in this case the group would allow new in- 

variants differing from the system of Maxwell equations, and the latter would not tben be 
closed. Therefore, the maximum group of this law should coincide exactly with the group 
of Maxwell equations. 

Maxwell equations and the law of inertia. The Galileo inertia law belongs to the 
category of laws connecting part of the variables of the set t, t, E, B, namely t aud x. It 
would certainly be absurd to hope that an experimental law resulting from observations 
having very little in common with those which led to the discovery of the fundamental 
properties of electromagnetism, should be associated with the same group as that of the 
Maxwell equations (in fact, the maximum group transforming the family of uniform and 
rectilinear motions into itself, is a projective group). However, since Maxwell’s equations 
include the quantities characterising the electromagnetic field, hence Maxwelli~ universe 
tams out to be broader than the Calilean one. Hence, it may be expected that the MaxwelI 
equations already contain tba Galileo law, and moreover, that they may contribute additional 
information about the motion of a free material point, not deducible from Galileo’s law. That 
it is indeed so, is shown below (section 4). 

Such is the heuristic reasoning leading to the setting up of the problem formulated 
at the beginning of this section, and to the interpretation of conformally-invariant motions 
as motions of an isolated point. 

The confonnal group G,S. This group is well known. Liouville [8] showed tbst any 
conformal mapping of a space of more than two dimensions reduces to a sequence of in- 
versions and similarity ~~sfo~ations. Lie f9] later gave another proof of this theorem. 

In 1909 Cunningham and Rateman [IO] showed that the Maxwell equations are invariant 
relative to eonformal mappings. Apparently Klein [II] (p. 95) was the first to notice the 
possibility of utilising the g&up G ,5 in the manner similar to that of the Lorentz group. 
In 1936, Page [121, guided by the ideas of Milne [13], constructed a ‘new relativity’ admitt- 
ing of the possibility of uniformly accelerated motion and dispensing with the concepts of 
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rigid scales and clocks. Still earlier, Caratheodory, in order to unify the axiomatics of the 

theory of relativity, constructed a theory utilizing only the properties of light siguals. In 

this work [14] he showed that non-linear transformations should be excluded from the group 

G,,, by using a first approximation to show that one of these transformations brings an 

isolated point at rest into the state of uniformly variable rectilinear motion, in contradiction 

with known mechanical facts. Conformally-invariant analogs of the equations of quantum 

mechanics, the Dirac equations, and the Lorentz equations for an electron are constructed 

in [XI. 

In one of the important Wigner works [Z], already cited, invariance relative to the 

group G,, is listed among the other invariance principles playing an important part in 

physics. 

2. Ffndfng the group 6, 5, We shall use a condition, derived from Maxwell’s equations, 

of invariance of the system of equations 

dsa s (&$a + (&?)a -j- (d~~)~ - ca dt” = 0, #$ = 0 (i = 1, 2, 3) (2.1) 

describing the law of rectilinear and uniform propagation of light beams*. That the velocity 

of light c is constant,is expressed mathematically by the fact that the universal constant c 

will remain constant under the transformations. 

Let us find the Lie algebra of infinitesimal operators corresponding to the group G,,. 

Let 7be a canonical parameter; ciS 9 components of operators transforming ziV r, respectively. 

Then 

Since the conditions 

have to be satisfiad,by equating the coefficients of 7, we find from (2.1) 

or 

dgjdxi - c’dqdt = 0 since ds2 = 0 

2dt)dt - h [(dz’)a + (d23)* + (dti)* - csdta] = 0 

Dummy indices of summation are used throughout. A is a function of zi, and t. The left 

hand side of the last equation is a quadratic form in coordinate and time diffarentials. 

Equating the symmetric coefficients of this form to sero, we obtain the ffrst part of 

+ The maximum group Cm allowed by the Maxwell equations is greater than the group G,,. 

However, the groap G,, will be the maximum of all possible subgroups of the group Cm 

whose non-identical transformations of c and xi depend only on these variables themselves. 
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equations defining & and q 

5 

If we now put 

dzi . ihi . 
-&- = P’, -- &P -g’ (2.3) 

and 

then 

let the components of the operators for these quantities be $2 g,+ respactiraly, 

(2.4) 

Here, total differentiation with respect to t is carried out by tirtne of (2.3). The in- 

variance condftfon of the sscond set of squstions from (2.11 will be satisfied if 6 
o{ 

= 0, 

since 
.9 

gi e 0, TJ (p’)’ - ca =I 0 

i=l 

which on expansion becomes 

f&j is the Kronecker tettsor ; pYf, and $ sre some unknown functions of zi and t). These 

relationships should be satisfied identically for all values of p . Equating the symmetric 

coefficients of this form, which is cubic in p , to zero, we find the second psrt of the 

equations defining e’ and W. By using these equations, it is essy to show that ei and B 

may only be 2nd degree polynomials in xi and t and should consequently be easily deter- 

mined. 

Without going into the detafls of the integration of the defining equations, we shall 

show thst the most general solution of these eqaations contains 15 arbitrary linear constants*, 

and the same number of infinitesimal operators 

X1=&, x2=&-, xs=&, x*=& 
X 

a 
5 = x1 &,J 

a ---_8_ 
as 9 X6=x’&s%&, x,=x$_~& 

X 8 = c*t & + 21 “g- , X*=+3+x2& xpJ=$t&+x3$ 

X 11 = x 1gi+x2&+x3&+t-g 

+ Putting A- I, results in a complete Loretttx group. 
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Xl3 = [@‘)3 - (2”)” - (2”)” + &3] & + 221.x? &- _t 221x3 & + 2s1t ;y 

x13 = 2,A? - aaT1 + [- (z’)” + (2”)” -(x3)” + CV] -& + 22”23 & + 233 ; 

Xl0 = 2x1x3 - a;1 + 2 23x3 & + [- (x1)3 - (x3)3 + (x3)” + c”P] & + 2z3t -g 

X 13 =: 2x9 & + 2x‘% & + zx3t & + w2 $(x2)” + (x3)” + c2t21 -g 

The operators X, to X, (exclading X,) correspond to the usual group of motions. The 

operators X, to X,, correspond to proper Lorentz transformations. The operator X, t yields 

the similarity transformation. The nonlinear operators X,, to X,, correspond to Moebins 

transformations [7]. To determine the final eqaations of the group G,, we ought to integrate 

the appropriate Lie equations. However, let as ase a ready-made resalt borrowed from [7] 

(p. 482) in which the final equations of the groap were obtained directly 

x*’ = ai + e5 2 e&k 
X 
k 

- Uk ~ ej (23” 

l-2 2 CjUj%j + (2 CjClj”) (x Cl(Xi)a) 
(k, I, j, i = 0, 1, 2, 3) 

(2.5) 

eo= 1, el = e, = e3 = -1, x0 = ct, 
CS 

ad = - c= - v= 
The parameters ati are connected by the orthogonality conditions 

i wikail = ek&l’, i eiakiqf = eki$k 
i=a i=o 

which lead to 

%i vi ait) vi’ -=-, 
Qo o 

-=-, 
a00 C 

aik = - qk + (a,,,, -1) $ (2.6) 

which shall be used later. 

Here the afk are the coefficients of the orthogonal transformation of the spatial 
., 

coordinates and they retain their significance in the case under consideration ; Y‘ and u‘ 

are components of the invariant velocity and its inversion for the inertial system. Here 

they are assumed to be initial velocities. 

3. Findiog the conformally-invariant motton~. The problem is poned as follows : it is 

necessary to find a family of motions possessing, generally speaking, velocities different 

from the velocity of light, and which would transform into itself under all transformations 

of the group GtS and only this group. 

Let 

xj’ = fj (5, t, a), t’ = f (5, t, a) (3.1) 

be finite transformations of the group G,,. We shall show that only the group G,, is allowed 

by the family of motions 

fj (5, t, a) = d = const (3.2) 
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Let the final equations of the group G S, G,, allowed by the family (3.2) have the 

form 

,jr = CD (3, t, a’), t’ = 0 (z, t, I-J’) (3.3) 

As (3.2) are absolute invariants of the group (3.3). we should have 

fj I@ (Z, t, a’), CD (x, t, a’), al = fj ix, t, cp (a',a)l 

Putting u = 0, we find 

@i (z, 4~‘) = fi 15, t, ~1 (a’, 0)l 

Differentiating with respect to ~‘and putting a’= 0, we find 

au+ a+ aq(d, 0) 
x=acp' aa' ’ 

E*qs t t) = CEqF(X, t> 

Here [‘i are components of the infinitesimal operators of the group C, and E’ are com- 

ponents of the operators of the group G,,. Operators of the group G which do not enter into 

the group G*s (supplementary operators), are found from suitable linear combinations of the 

operators. 
x* = q* (2, t) & + C*‘(a) Y$ 

Let us now show that v are independent of z j. Solving (3.3) for xi (this is possible), 

we obtain 

The quantities xl are not transformed by the additional transformations, hence the 

equalities 

X*cpj (t, p) = ‘I* (z, t) *‘d_:’ @ + c’(p) @$; 13) = 0 

should be satisfied identically in all the variables. Hence 

It may now be shown that if q* + const, then no additional transformations e&t, 

whxh would, together with G15 , form a group. 

In fact, let us consider, say, the operator X, = c2ti3 / 8~1 + zld /at belonging to 

the algebra corresponding to G,,. together with X* = q* (t)a /&! . Since 

X, = d / dzl, X, = d /i%! are the only operators in this algebra containing only the 

variables n’ and t, apart from X, itself, it follows that 

(X,, x*) = r%l* (t) $- -call* (t) & = aXI3 + PX, + 7x4 + qt* (t) $ = 
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Hence 

x171*’ (t) = xc1 + y + ?-jl” (t), - c2q* (t) = a& + p (q* = - $) 

Thus we have prayed that G = G,, . Let us now find the required law. Let us keep 

xl fixed instead of XI in (2.51. Fnrthermore, to simplify the calculations, let us put 

~1~ 1 = x9 = 0 (this letter simplification does not, however lead to any loss of gener- 

ality since the constants a: as is easily seen from the form of the tr~sfo~ation~ (2.51, 

are not essential). 

Returning to the variable t = x0/c, we obtain 

3 (3.4) 

b=zo ekai&.$ S 3 a$ - ala - ue’ - aaa 

0~ next problem is to eliminate t from the system (3.4), and to express the parameters 

appearing in the right-hand sides of equations, in terms of the initial conditiona. Solving 

the last equation of (3.4) far t and substitu~g the result in the r~a~~g equations of 

the system (3.41, we obtain after manipulation 

xoi’ = xoi’ + 2 c- 

i 

%X1 

Xl’ - urn*% 
(t’ - to’) + 

urn 
+ ;! X1s TLrne, (eW0 - 114~~~~ (t’ - tot j2 + 4ey~ (t’ - t;) + e23zoo2) 

(3.51 
“i0 

Ui = ri - To - f 
em 

x0 = ‘;102--P, XI = aoaoo - 70 (i -1, 2, 3) 

dzip . 
dt’ = v’, 

d2$’ 
dt’8 = wa as t’ = t( 

Analysis shows that the number of essential parameters in (3.51 is 9 (not considering 

to’). Omitting the elementary, but tedious, computations performed by utilizing (2.61, we 

arrive at the final result 

ui = 
esam2 . 

-2czW” x0 = * (29 + Jg 8%) f Xl=*s 

fe = WV1 + WPa + WsVa) 

Here E is the scalar product of the vectors V. w (the initial velocity and acceleration). 

Substituting the found expressions for Ui, X0, and X1 into (3.51, we obtain the required law 

&o 
+- fL(y %d 

xi’ = xoi’ + (vi - $) (f _ t;) + 

l-i i 
(3.6) 

$ 

2 

rv'3 + q- eZ)(f-- to')* + y E (f -- t;) + I)':'- 1 

I 

If all the constants ure eliminated from (3.6) by successive differentiation, we obtain 

the differentia1 equations of motion of a material point 
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Under the condition 

the set of equations (3.7) determines the respective invariant of the group G,, continued 

up the third derivative (of the coordinates with respect to time) inclusive. This can be 

checked directly. 

A more direct way of determining the law (3.6) is the following: Having suitably con- 

tinned the group G,, it is possible to find its respective invariant under the condition 

*I I Ii tdx’) .dt’ -cZ#O 

f=l 

and then to integrate differential equations obtained. In practice this method is found to 

be laborioas. 

4. Khmatic properties of conformaIIy&voricmt mot&n8 of a moteUI potnt. 

(1) Since the radicand in (3.6) remains positive, the law of motion has meaning only if 

the discrlminant of this radicand is negative - ao,,v f ~2 f 0, The latter is true if and 

only if f2aoa > 0, i.8, v$ < ca. This mathematical fact may be interpreted as an in- 

dication of the impossibility of motions possessing velocities greater than that of light. 

(2) If the projection of the initial acceleration on any of the coordinate BIOS is equal 

to zero wr= 0, say, then $21’ / &‘2 i= 0 at any instant daring the motion. If all 

three components of the initial acceleration are zero, the motion of the material point always 

remains rectilinear and aniform. 

(3) Let the initial acceleration be different from zero w # 0. Differentiating (3.6) 

we obtain in the limit 

i.e. if the initial acceleration of the point is not eqaal to xero, then its velocity approachee 

asymptotically the limiting velocity. 

Let us differentiate (3.6) twice and let us form the expression for the squsre of the 

modulus of the acceleration 



10 L.M. Markhashov 

We can see from this expression that for W# 0 the modulus of the acceleration 

begins to decrease and tends to zero, at some time t’ < to’, so that 

max 2 (-$$)’ = ~2 P’ 3 to? 

(4) The trajectory of the motion is a hyperbola in the plane formed by the initial 

velocity and acceleration vectors. When these vectors are parallel, the hyperbola becomes 

a straight line. 

(5) The universe of the Maxwell equations described by the group G,, does not contain 

any universal (therefore untransformable) constants except c. Hence, in conformity with the 

viewpoint developed here, it is necessary to separate out of the family of motions, for 

which the group G,, is the group of all their automorphisms,snch a subgroup, which would 

not contain ontrausformable constants different from c. Such a family is given by (3.6). It 

is easy to show that in the above mentioned sense it is the most general one. 

Actually, the law (3.7), being a differential expression of the law (3.6), is generated 

by the complete set of invariants of the triply continued groop Gt5. This means that this 

goup has no other invariants. Hence, if a law existed which was more general than (3.7). 

it should be looked for amongst the invariants of the group G,, continued to at least four 

derivatives. But such a group operates in a space of 16 dimensions, which exceeds the 

order of the group, hence, it is intransitive and, therefore, allows absolute invariants. The 

absolute invariants contain ontransformable constants which are essential to the solution. 

This however contradicts our previous statements. The law (3.6) is also an unique one 

since there are no two different systems of differential invariants of the same order, each 

of which would uniquely determine the same gronp. 

5. On the treatment of conformally-invariant motions. The following alternative arise 
in the diacnseion of the obtained results. 

(1) Conformally-invariant motions do not occur in nature for any initial values of the 
acceleration (except zero). In this case it is necessary either to assume that the des- 
cription of space-time given by the Maxwell equations in terms of the physical concepts 
entering these eqttations is not complete ; or to cast a doubt on the validity of the invariance 

principles. 

(2) Conformally-invariant motions do occur in natnre for values of the initial accelera- 
tions different from zero. In this case they may occur either for arbitrary initial conditions, 
i.e. the point may be considered isolated or, for some fixed (different from zero,) initial 
accelerations, i.e. in a force field. Let us discuss these possibilities. 

(a) Motion of an Isolated Point. (This has already been partially discasaed in section 1). 
The Galileo inertial law is satisfied in nature with a high degree of accuracy. The conformally- 
invariant motions (3.6) do not contradict it. 

Indeed, the Galileo Inertial Law states that if at a particular instant a material point is 
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at rest or in the state of uniform motion (instantaneous acceleration equal to zero), then it 
will remain in this state all the time. But this also follows from (3.6). Nothing is said in the 

Galileo inertia law about the pre-history of such instantaneous states, not any alternatives 
offered. Hence, tbt following deduction may be formulated. 

The Galileo Inerti8 Law is valid in the universe of the Maxwell equations. However, if 
an instantaneous state in which the acceleration is not zero is possible for a free material 
point, then this 8CCeleI8tiOn will not vanish instantaaeously, but it will tend asymptotically 
to zero. At the same time, a point will be accelerated to the velocity of light, and this will 
be independent of its initial velocity. 

b) Motion in D Force Field. Only two kinds of mechanical force interaction8 ue known: 
Newtonian and relativistic; after a single integration, (3.7) may be rewritten for them aa 

m,d$+_;)h, ?&(i-$)h+$(h*V)V (h=aoi,%ow) (3.x) 

Here m. is the rest m8ss of a material point, h is a constant vector; p is the relativistic 

momentum. Since the right-hand sides of (5.1) do not generally ae;ree with the Lorenta 

force, conformally-invariant motions cannot be generated only by sn electromagnetic field 

alone * 

Analysis shows that motions descrfbed by (5.1) may occur only for particular solutions 
of the Maxwell equations (for example,H = 0, E = con&.). At the same time, a particular 
motion belonging to (3.6) is obtained (fnitial velocity should be collinear with direction of 
the field. 

These motions cannot be generated by an Einsteinian gravitational field. This is seen 
directly from the fact that the gravitational field should bend light rays, which is not the 

case. Rence, attempts to interpret the right hand aides of (5.1) as the component of any of 

the hewn fielda apparently encounter serious difficulties, within the scope of the men- 

tioned definitions of forces. 

Consequently, the author is inclfnud to 8CCept the first of the treatments, according 
to which the conformally-invariant motions may be performed by an isolated point and, 
are therefore inertial. 
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